WHAT DOES RESEARCH SUGGEST ABOUT THE TEACHING AND LEARNING OF DIVISION AND MULTIPLICATION?

TALKING POINT:

- Consideration needs to be given to the ways in which multiplicative reasoning is different from additive reasoning.
- Students’ conceptual understanding of multiplicative reasoning is supported by composing and decomposing numbers through ideas of splitting, scaling and replicating.
- The array is a particularly useful representation of division and multiplication as it captures two distinct inputs and can reveal commutative and distributive properties.
- Exploring a variety of calculation strategies can support students in solving problems flexibly; it follows that it is useful to support this with ways of assessing division and multiplication that allow students to show their flexible knowledge of procedures and ability to choose strategies.
- “Chunking” strategies for division (see infographic B and C) support students’ mental methods.
- It is suggested that students explore the concept of leftovers or remainders from the outset of their learning around concepts of division.
- Developing students’ thinking through the use of the array, an area model and the grid method for multiplication supports understanding of the two-dimensional structure of multiplication.

IN SUMMARY

1. Consideration needs to be given to the ways in which multiplicative reasoning is different from additive reasoning.
2. Students’ conceptual understanding of multiplicative reasoning is supported by composing and decomposing numbers through ideas of splitting, scaling and replicating.
3. The array is a particularly useful representation of division and multiplication as it captures two distinct inputs and can reveal commutative and distributive properties.
4. Exploring a variety of calculation strategies can support students in solving problems flexibly; it follows that it is useful to support this with ways of assessing division and multiplication that allow students to show their flexible knowledge of procedures and ability to choose strategies.
5. “ Chunking” strategies for division (see infographic B and C) support students’ mental methods.
6. It is suggested that students explore the concept of leftovers or remainders from the outset of their learning around concepts of division.
7. Developing students’ thinking through the use of the array, an area model and the grid method for multiplication supports understanding of the two-dimensional structure of multiplication.

IMPLICATIONS: Multiplicative reasoning is foundational to many mathematical, workplace and real-life ideas, and is not just a set of concepts that consist of more than just repeated addition. It is useful to consider the ways in which multiplicative reasoning is different from additive reasoning, comparing visualisations of each.

Teachers might find it helpful to see multiplicative reasoning as (among others) replication, scaling, using two different types of input and involving a ratio structure with four elements.
Students benefit from representing division and multiplication by exploring ways of composing and decomposing numbers in different ways, including splitting, scaling and replicating. In particular, using arrays can support these explorations of both division and multiplication and has several benefits: it reinforces the two-dimensionality of multiplication in contrast to additive reasoning, which is one-dimensional; and it encourages a “visual demonstration of the commutative and distributive properties of multiplication.”

IMPLICATIONS: Students’ conceptual understanding of dividing and multiplying is supported by composing and decomposing numbers in different ways

Using arrays to represent multiplication and division helps demonstrate both distinctness of the two inputs being considered and the way in which multiplication is distributive and commutative

Researchers agree that developing automaticity in some multiplication and division facts is desirable as it frees up cognitive capacity for problem solving. However, testing times tables, especially in timed conditions, may contribute to maths anxiety. Since students’ knowledge of multiple procedures and their ability to choose flexibly among them to solve problems is positively related to conceptual knowledge, assessing this may be a more useful representation of their multiplicative reasoning.

IMPLICATIONS: There are benefits to timed tests as a route to automaticity with times tables for students, but they may also contribute to maths anxiety

It may be useful to consider ways of assessing times tables that allow students to show their flexible knowledge of procedures and ability to choose strategies

Research suggests that children experience more difficulty with the standard algorithm for division [see infographic method E] than with any other of the algorithms for basic operations. An alternative to the standard algorithm, “chunking” strategies (see infographic B and C) are suggested as the key to successful mental methods. “Chunking up” strategies (e.g., infographic C) have been found to be more reliable than “chunking down” strategies (e.g., infographic B). Making sense of leftovers or remainders is important in division situations and so providing early opportunities to explore contextualised, “messy” division problems is recommended.

IMPLICATIONS: The standard algorithm for division can be particularly problematic for students; exploring other strategies, particularly those based on chunking, may be helpful!

Chunking strategies for division (see infographic B and C) are suggested as useful in supporting mental methods of calculation

Making sense of remainders and interpreting them in the problem context is important for all students

There are many different strategies associated with the concept of multiplication and it is suggested that an appreciation of a variety of these and the opportunity to compare them supports a more flexible approach to students’ problem solving. Exploring an array structure, developing this into an area model and then into a grid method provides opportunities for students to see and use structures that reveal commutative and distributive properties, which can relate to effective mental calculation and methods of estimation, supporting these comparisons and choices.

IMPLICATIONS: It is recommended that students experience a variety of methods of multiplication in order to support their selection of appropriate problem-solving strategies

Progressing from an array through to an area model to a grid method supports conceptual understanding of multiplication and aids mental calculation and estimation

“Riding my bicycle gets me to my office in about the same time as taking my car, but the two processes are very different”—Devlin, 2008

“When I taught A-level Maths … it was not uncommon to find students who … did not appreciate that multiplying by \(\frac{1}{2}\) was equivalent to dividing by 2”—Stripp, 2018

REFERENCES

20. Stripp, C. (2015, April 14). How can we meet the needs of all pupils without differentiation of any sort? How can we record progress without NFER NFER?