Establishing concepts of ratio

In the beginning students explore ways to describe relationships between quantities. They begin to recognise that this may be done additively (as difference) or multiplicatively (as scaling, nesting, and/or ratio). They think about what the parts of a ratio might mean.

In the next stages students make sense of equivalent ratio relationships by making and talking about a variety of pictures and diagrams. They think about how this relates to other representations of proportion such as fractions, explicitly considering part-part, part-whole, and whole-whole models.

Making sense of these things together, students co-ordinate fraction, ratio, percentage and decimal representations of proportional relationships. They think about the ways ratio is embedded in concepts of similarity and may begin to think about ratio as a constant rate of change.
 Explore}multiplicative comparisonKey research source

> Middleton, J. A., \& van den HeuvelPanhuizen, M. (1995). The ratio table, Mathematics Teaching in the Middle School, 1(4), 282-288.
> Short: 8 or fewer pages long
> Earlier: more than 16 years before Instant publication

[^0]

[^0]: ${ }^{\circ}$ © Key question: How do we know two ratios are equivalent?

