Digital maths – (Always) an improvement when...

Alison Clark-Wilson
University College London
UK
Overview

• Necessary (but not sufficient) conditions for (moderate) success
• Learning from the past
• Taking stock
• What is around the corner?
Overview

Vision
Beliefs
Curriculum (pedagogy)

Access to technology
Curriculum (content)
Curriculum (assessment)

Professional support for teachers

- Vision
- Beliefs
- Curriculum (pedagogy)
- Access to technology
- Curriculum (content)
- Curriculum (assessment)

Professional support for teachers
A mathematical interlude....

From LOGO...

To modelling in dynamic geometry...
A mathematical interlude....

From LOGO...

To modelling in dynamic geometry...
Critical factors

- Design principles for the use of the technology need to align with the conditions in schools...
- By its nature, technology is disruptive – so a clear tension here...
- Teachers’ professional learning takes time...
- Nature and design of high-stakes assessment is key...
What is happening elsewhere?

- **Vision**
- **Beliefs**
- **Curriculum (pedagogy)**

- Access to technology
- Curriculum (content)
- Curriculum (assessment)

Professional support for teachers
Digital skills in Mathematics involves using digital tools to learn through play, exploration, visualisation and presentation.

It also involves learning how to use and assess digital aids and tools for calculating, problem solving, simulation and modelling.

It also means it is important to find information, analyse, process and present data using appropriate tools, and being critical of sources, analyses and results.

The development of digital skills involves working with complex digital texts with an increasing degree of complexity.

It also involves developing an increasing awareness of the new digital tools that exist for learning in the subject of Mathematics.
Textbooks come to Life!

Browse all topics